
F Fermi National Accelerator Laboratory

FERMILAB-Pub-99/378-A

Inverting the Angular Correlation Function

Scott Dodelson and Enrique Gaztanaga

Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, Illinois 60510

April 2000

Submitted to Monthly Notices of Royal Astronomical Society

Operated by Universities Research Association Inc. under Contract No. DE-AC02-76CH03000 with the United States Department of Energy



Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States

Government. Neither the United States Government nor any agency thereof, nor any of

their employees, makes any warranty, expressed or implied, or assumes any legal liability or

responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

product, or process disclosed, or represents that its use would not infringe privately owned

rights. Reference herein to any speci�c commercial product, process, or service by trade

name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its

endorsement, recommendation, or favoring by the United States Government or any agency

thereof. The views and opinions of authors expressed herein do not necessarily state or reect

those of the United States Government or any agency thereof.

Distribution

Approved for public release; further dissemination unlimited.

Copyright Noti�cation

This manuscript has been authored by Universities Research Association, Inc. under con-

tract No. DE-AC02-76CH03000 with the U.S. Department of Energy. The United States

Government and the publisher, by accepting the article for publication, acknowledges that

the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license

to publish or reproduce the published form of this manuscript, or allow others to do so, for

United States Government Purposes.



ar
X

iv
:a

st
ro

-p
h/

99
06

28
9 

v2
   

12
 N

ov
 1

99
9

Mon. Not. R. Astron. Soc. 000, 000{000 (0000) Printed 9 March 2000 (MN LATEX style �le v1.4)

Inverting the Angular Correlation Function

Scott Dodelson1;2 and Enrique Gazta~naga3

1 NASA/Fermilab Astrophysics Center, P.O. Box 500, Batavia, IL 60510 USA
2 Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 USA
3 Consejo Superior de Investigaciones Cient���cas (CSIC), Institut d'Estudis Espacials de Catalunya (IEEC),
Edf. Nexus-201 - c/ Gran Capitan 2-4, 08034 Barcelona, SPAIN

9 March 2000

ABSTRACT

The two point angular correlation function is an excellent measure of structure
in the universe. To extract from it the three dimensional power spectrum, one must
invert Limber's Equation. Here we perform this inversion using a Bayesian prior con-
straining the smoothness of the power spectrum. Among other virtues, this technique
allows for the possibility that the estimates of the angular correlation function are
correlated from bin to bin. The output of this technique are estimators for the binned
power spectrum and a full covariance matrix. Angular correlations mix small and large
scales but after the inversion, small scale data can be trivially eliminated, thereby al-
lowing for realistic constraints on theories of large scale structure. We analyze the APM
catalogue as an example, comparing our results with previous results. As a byproduct
of these tests, we �nd { in rough agreement with previous work { that APM places
stringent constraints on Cold Dark Matter inspired models, with the shape param-
eter constrained to be 0:25 � 0:04 (using data with wavenumber k � 0:1hMpc�1).
This range of allowed values use the full power spectrum covariance matrix, but as-
sumes negligible covariance in the o�-diagonal angular correlation error matrix, which
is estimated with a large angular resolution of 0:5degrees (in the range 0:5 and 20
degrees).

1 INTRODUCTION

The two point angular correlation function, w(�), has
emerged as one of the most powerful measurements in cos-
mology. It is constructed from photometric catalogues, by-
passing the need to take time-consuming redshifts. Photo-
metric catalogues contain many more galaxies than do red-
shift surveys. This advantage in statistics is often enough
to o�set the extra information about distance conatined
in redshift surveys. In fact, one might argue that the red-
shift is prone to misinterpretation due to redshift-space dis-
tortions caused by peculiar velocities. Angular catalogues
which implicitly integrate over all line-of-sight distances
avoid these distortions. These general arguments are backed
up by the current state of a�airs regarding the three di-
mensional power spectrum. The surveys which constrain the
power spectrum on the largest scales are the APM (Mad-
dox et al. 1990) and EDSGC (Collins, Nichol, and Lumsden
1992) surveys, each of which contain angular positions for
well over a million galaxies.

Extracting the power spectrum from w(�) requires an
inversion of Limber's Equation which describes how the an-
gular correlation function probes structure on all scales. This
a classical example of an inverse (linear) problem. Schemat-
ically, Limber's Equation reads

wi = Ki�P� (1)

where Roman indices label angular bins, while Greek indices
label bins in k � space. Here, we use the same kernel K
used by Baugh & Efstathiou (1993,1994) and Gazta~naga &
Baugh (1998). These groups have successfully extracted the
power spectrum from the APM w by using Lucy's method
to invert Eq.[1]. Roughly, this entails �tting a function to
the observed w, and then iterating until one �nds the best
power spectrum. We say \successfully" because Gazta~naga
& Baugh (1998) have tested their method on simulations.
They show that the power spectrum they obtain by measur-
ing w(�) in the simulations and then inverting agrees well
with the true power spectrum.

Over the coming decade, a wide variety of galaxy sur-
veys and cosmic microwave background anisotropy exper-
iments will generate a wealth of data for cosmologists to
study. It is conceivable that we will enter the age of preci-
sion cosmology, where we strive to determine fundamental
physical and cosmological parameters extremely accurately.
To be e�ective in this environment a given measurement
must provide not only a reliable estimator for the quantity
under consideration (e.g. the power spectrum) but also a re-
liable error matrix. The purpose of this paper is to introduce
a technique which extracts from w(�) not only an estimator
for the power spectrum P (k), but also a reliable measure of
the error matrix, CP . This error matrix provides a quanti-
tative measure of the accuracy of the estimator. The fact
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2 S. Dodelson and E. Gazta~naga

that it is a matrix, and not just a vector of diagonal error
bars, allows for the very real possibility that the power spec-
trum estimator in nearby bins will be correlated. This set of
(P;CP ) can then be used to constrain cosmological models
and parameters.

The question naturally arises as to why one extracts the
power spectrum from the angular correlation function; why
not simply constrain models with the angular data? Section
2 provides an answer to this question. Section 3 describes the
technique, which is very similar to that discussed in Press
et al. (1992). Since we want to test not only our estimates
of P (k) but also our estimates of the error matrix, it is not
su�cient to compare extracted P with the true P . Section
4 describes the way we will test the error matrix. Finally,
section 5 presents the results for the APM survey. In the
process, we will obtain a set of powerful constraints on Cold
Dark Matter (CDM) models. We conclude in section 6 with
suggestions for future work.

2 WHY INVERT?

There are several reasons why an extracted three dimen-
sional power spectrum is more useful than the two point
angular correlation function. The kernel in 1 depends on de-
tails of the survey: how deep does it go? What is its selection
function? Therefore, w(�) is very dependent on the survey.
Di�erent surveys can and do get di�erent results. The power
spectrum, on the other hand, is more closely tied to theo-
ries; in principle the estimators constructed for the power
spectrum try to be as unbiased as possible.

The most important consideration, though, has nothing
to do with these issues of taste. Rather, the most important
issue is that the angular correlation function depends on
physics about which we know little: the physics of nonlin-
earities and hydrodynamics which operate on small scales.
Figure 1 illustrates this point. It shows w(�) for several dif-
ferent angles { all thought to be \large" { as a function of
the maximum value of k considered in the sum in Eq.[1].
That is, we perform the integral in Eq.[1] up to k = kmax to
�nd w(�; kmax). We see that even these large angles get non-
negligible contributions from relatively large wave numbers
(small scales). For example, even w(5�) depends somewhat
on the power between k = 0:1 ! 0:2hMpc�1. These are
scales small enough to be a�ected by nonlinearities and hy-
drodynamics. The other side of the coin is that w(1�), while
dominated by small scale power, does contain some informa-
tion about large scales, and it would be a shame to throw
this information away.

Inversion o�ers an excellent way out of this dilemma.
Upon inverting, we will be using all the large scale infor-
mation and throwing out all the small scale information.
Mathematically, this is done in a trivial way:

� Perform the inversion and get P and its associated error
matrix CP .
� Throw away all the small scale bins from step 1 by

truncating P and CP . This is equivalent to marginalizing
over these modes. That is, the resulting smaller error matrix
has implicitly integrated over all possible values of P on
small scales. It is not contaminated at all by small scale
information.
� Use these large scale modes to constrain theories.

Figure 1. The cumulative value of the angular correlation func-
tion, considering all k� modes up to kmax. The response function
is that for the APM survey, and the power spectrum used is the
best-�t CDM-like power spectrum for that survey.

We now proceed to outline the inversion process.

3 INVERSION

One's �rst thought upon encountering Eq.[1] is to simply
invert the matrix K to obtain a estimator for the power
spectrum:

P̂� = K
�1

�;iŵi (2)

where the set of ŵi are the estimators for the angular cor-
relation function. This simple approach does not work. The
inversion is very unstable and typically leads to nonsense.
This is because the solution is degenerate (or K is singu-
lar) as we typically want to obtain more information about
P (k) than available in w(theta). In order to regulate the
inversion, we need to introduce a bit of formalism.

We will assume that we are handed a set of Nw esti-
mators for the angular correlation function, ŵi, each i cor-
responding to one of the Nw angular bins. In addition, we
assume we are handed the full error matrix for this set of
estimators, Cw , an Nw � Nw matrix. This could be com-
puted from �rst principles, or it could be estimated from a
set of simulations. Mathematically, the simplest assumption
is that the errors have a Gaussian distribution so that the
probability that the angular correlation function is equal to
wi is

P

��
wi

��
/ exp

n
�

1

2
(wi � ŵi) (C

�1

w )ij (wj � ŵj)
o

(3)

In order to invert, we need to assume more, we need to
assume that the power spectrum is \smooth." This assump-
tion is put in by a second exponential in the probability
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distribution (Press et al. , 1992):

P

��
P�

��
/ exp

n
�

1

2
(Ki�P� � ŵi)C

�1

ij (Kj�P� � ŵj)
o

� exp
n
�
�

2
P�H��P�

o
(4)

where now we have explicitly eliminated w in favor of P us-
ing Limber's Equation. The second exponential here can be
viewed as a prior distribution. It is implemented by putting
in some matrix H (see Press et al. 1992 for some examples)
which makes it costly for P to vary too much. Here we use
for H the �rst di�erence matrix, equation 18.5.3. in Press et
al. (1986). We have tried other di�erence matrices with little
e�ect on the results. For historical reasons, we have actually
taken kP (k) to be the unknown function. This means that
we are smoothing kP (k) to be locally at.

This entire H term is weighted by a free parameter �,
which allows one to tune the relative weights of the �rst and
second exponential. One of the questions which will occupy
us below is, What should � be set to? If one distrusts priors,
� should be set very small to have little e�ect. This will
have to be balanced by the requirement that the inversion
is stable.

The argument of the exponential in Eq.[4] is quadratic
in P . Thus it can be rewritten as

P

��
P�

��
/ exp

n
�
1

2

�
P� � P̂�

�
(C�1P )��

�
P� � P̂�

�o
(5)

where the estimator for the power spectrum is

P̂� � (C�1P )��(K
t)�i(C

�1

w )ijŵj (6)

and the error matrix is

CP;�� �
�
(Kt)�i(C

�1

w )ijKj� + �H��

�
�1

: (7)

Note that in the limit that � ! 0 we do indeed recapture
our initial guess, P̂ = K�1ŵ. By varying � we can now
move away from this unstable solution. Also note that while
Press et al. (1992) refrain themselves from talking about the
�PHP term as a prior, this interpretation is essential if we
are to obtain an error matrix for P .

4 TESTS OF INVERSION: CONSTRAINTS ON

COSMOLOGICAL MODELS

The simplest test of an inversion technique is to compare the
recovered power spectrum with the true, underlying spec-
trum. There are several problems with this, though. First,
and foremost, we do not know the true power spectrum.
This di�culty can be surmounted by working with simu-
lations, with which it is possible to generate angular cata-
logues. However, even if the true power spectrum is known,
there is always the quantitative problem of determining how
good the inversion is. This problem is exascerbated when the
estimates of the power spectrum in adjacent bins are corre-
lated. How do we make sense of the full error matrix for
P (k)?

One way to test inversion is to put constraints on the
parameters in a cosmological model. First, the constraints
can be placed in the parameter space using the angular data,
and then a second set of constraints can be drawn using the
inferred power spectrum. These should agree. In fact, the

Figure 2. The angular correlation function from the APM sur-
vey (points with error bars). Also shown is the angular correlation
function associated with the best �t CDM model from the con-
tours in Figure 3.

method described in x2 is linear: the estimators for P (k) are
linear in the estimators of w. Really, then, the inversion pro-
cess can be thought of as a new basis for the data, the \P"
basis instead of the \w" basis. Through this prism, it is clear
that the constraints on parameters should be independent
of basis.

For our example, we will choose the APM survey (Mad-
dox et al. 1990), with data points and error bars shown in
Figure 2. Errors are from the dispersion in 4 subsamples
of the APM pixel maps (same as in Baugh & Efstathiou
1994) and are assumed to be diagonal. We have tried several
ways of estimating the full covariance matrix for w. First,
we have estimated it directly from the four quadrants of the
APM survey. This produced a covariance matrix which was
far too noisy. We then generated ten separate mock APM
catalogues and estimated the covariance matrix from these
forty sets (10� four quadrants for each). This proceedure
worked on smaller angular scales but broke down on the
largest scales (probably because the simulations were not
large enough). One could also estimate Cw analytically by
assuming that the underlaying uctuations are Gaussian.
The results that we have obtained using the full covariance
matrix of Cw , but with smaller angular scales (ie � < 10
deg), give larger errors, but not much di�erent in qualita-
tive terms from the results that will be present here. This pa-
per is mostly concerned with the inversion process for �xed
(w;Cw) so we will simply assume here that Cw is diagonal
and leave o�-diaginal errors for future work.

The model we choose to constrain is the CDM-like
power spectrum with power spectrum

P (k) = AkT
2(k; �) (8)

where T is the BBKS (Bardeen, et al. 1986) transfer func-
tion. There are two free parameters in this model: the am-
plitude A and the shape parameter �. We �rst determine
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4 S. Dodelson and E. Gazta~naga

Figure 3. Allowed one- and two- sigma regions in CDM-like pa-
rameter space from APM survey. \Standard CDM" corresponds
to � = 0:5; COBE-normalization sets A ' 107 Mpc4.

the constraints on these parameters using the angular cor-
relation data. Speci�cally, we calculate

�
2
�

NwX
i=1

(wi(�;A)� ŵi)
2

Cw;ii

(9)

where we have explicitly indicated that wi depends on the
parameters (A;�) via Limber's Equation Eq.[1]. Figure 3
shows the allowed one- and two- sigma regions in this pa-
rameter space. These contours will be our basis for judging
the e�ciency of the inversion. If we include all k� modes,
we should recover identical contours from the inverted spec-
trum. The main advantage of inversion is that once we have
performed a successful inversion, we can throw out the small
scale k� modes and generate a new, more reliable allowed
region.

5 INVERSION OF APM CORRELATION

FUNCTION

We now test the inversion algorithm of x3 on the APM data.
The extracted power is shown in Figure 4. The error bars are
the square roots of the diagonal elements of CP . For each
bin, this error then includes the uncertainties induced by
marginalizing over all other k� modes. Also shown in Figure
4 is the power spectrum obtained by Lucy's method (from
Table 2 in Gazta~naga & Baugh 1998). These agree very well
except on small scales. However, most of the disagreement
is illusory because we are only using angular scales � > 0:5
degree which has limited information about the power on
scales k > 0:5Mpc�1.

Some of the disagreement between the two methods on
small scales results from a more subtle e�ect. The estimates
of the power spectrum on small scales are highly correlated,
as shown in Figure 5. This means that the overall ampli-

Figure 4. The power spectrum obtained by inverting the APM
correlation function. Square symbols are from Bayesian inversion
described in x3; circles are from Lucy's method. The free parame-
ter � in Eq.[4] has been set to an \intermediate" value here 10�4.
The solid curve corresponds to the best-�t CDM like model.

tude in any of these modes is uncertain? This uncertainty
is reected in the large diagonal error bars. One can think
of this in terms of linear combinations of the modes. One
linear combination { the sum of power in the all the bins
or the average power { is very uncertain. However, all other
linear combinations { and therefore the shape { are known
quite accurately.

We now test the inversion to see if it recaptures the
constraints on the parameters � and A that were obtained
in Figure 3 the angular correlation function itself. Figure 6
shows these two sets of contours; they agree extremely well,
suggesting that the inversion has been successul.

Finally, Figure 7 shows the contours one obtains by
throwing out the small scale data (k <= 0:1hMpc�1). As
one might expect, the allowed region gets much larger, but
the qualitative statement that small � � 0:25 is preferred
remains true. Gaztanaga & Baugh (1998) found a higher
value of � = 0:45 � 0:10, over the four points in range
0:02 < k < 0:06hMpc�1. For this narrower range of scales
our allowed region does indeed peak closer to � = 0:4 as ex-
pected from the agreement in both P (k) estimations shown
in Figure 4.

Figures 4-7 are for a particular value (10�4) of the free
parameter � which sets the importance of the smoothness

? One way to see this is to add to a 2 � 2 identity matrix a
very large number to each of the matrix elements (including the
o�-diagonal ones). Upon diagonalizing this matrix, one sees that
one eigenmode { the sum of the two original ones { has a huge
eigenvalue, while the eigenmode corresponding to the di�erence
has eigenvalue equal to one. In fact, analysts of cosmic microwave
background experiments often add a very large number to every
element of the covariance matrix to account for the fact that the
average is unknown (Bond, Ja�e, & Knox, 1998).

c 0000 RAS, MNRAS 000, 000{000



Inverting the Angular Correlation Function 5

Figure 5. The full covariance matrix of the power spectrum
depicted in Figure 4. Each element is normalized by the diagonal:
CP;ij=

p
CP;iiCP;jj . Note the large covariances among bins 15�

23, corresponding to k >� 0:2hMpc�1.

Figure 6. Allowed one- and two-sigma region in parameter space
from APM using the angular correlation function directly and the
extracted power spectrum with its error matrix CP .

prior in Eq.[4]. What motivates this choice and how do the
results change as � gets bigger or smaller?

First consider reducing � thereby trying to eliminate
the dependence on the smoothing prior. Figure 8 shows the
inferred power spectrum in this case. Although the mean
P (k) agrees with that using a stronger smoothness prior,
the error bars are signi�cantly larger. The larger errors re-

Figure 7. Same as Figure 6, except now only the large scale
data has been used.

sult from the fact that the power spectrum estimates are
much more highly correlated if the prior is weak, due to
the degeneracy in the inverse problem solution. To under-
stand this, consider the limit of no smoothness prior. In that
case, it is possible to �t the w(�) data with an extremely
choppy power spectrum. One bin might have huge power,
while another has negative power. This choppiness is evi-
dent on large scales in Figure 8. One could still try to use
such a choppy power spectrum to �t models. But the results
in each bin do not make much sense by themselves and there
are large covariances among the di�erent bins. So this is not
a very useful representation of the data. The large correla-
tions between di�erent bins also a�ects the constraints on
CDM models, which use only the large scale data. This is
shown in Figure 9. The small � constraints (weak prior) are
much less restrictive than the stronger prior. This reects
the fact that the large scale estimates are highly dependent
on the small scale estimates. Hence, marginalizing over the
latter leads to constraints which are not very tight. Inciden-
tally, the constraints obtained using all the data are identical
to the constraints coming from w(�) itself (the analogue of
Figure 6). So the inversion is accurate, but not useful be-
cause the modes are so correlated.

Introducing a stronger prior leads to an inaccurate
power spectrum extraction. The prior is given too much
weight, and the data loses out. We can see this in Figure
10, which shows the power spectrum using a strong prior as
opposed to the moderate one advocated earlier. At interme-
diate scales the power estimates di�er decidedly. Examining
the constraints on the cosmological parameters illustrates
that the incorrect inversion is the one using the strong prior.
Figure 11 shows that the strong prior leads to incorrect con-
straints. The information in the data has not been processed
accurately.
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6 S. Dodelson and E. Gazta~naga

Figure 8. The invertedpower spectrumusing a weak smoothness
prior (� = 10�5; squares) and the moderate prior (� = 10�4;
circles) used previously. The larger error bars in the weak prior
case result from higher bin-to-bin correlations.

Figure 9. Constraints on parameter space using only large scale
data frommoderate prior (thick lines) and weak prior (thin lines).
The weak prior leads to less restrictive constraints.

6 CONCLUSIONS

Very valuable information is contained in the angular cor-
relation function. A useful way to extract this information
is to invert it and obtain an estimator for the three dimen-
sional power spectrum. We have introduced here a method
that is di�erent from the one used previously and have fo-
cused intensely on its advantages and its features. However,
it is important not to lose sight of the fact that this inver-
sion technique agrees extremely well with Lucy's method,

Figure 10. The inverted power spectrum using a strong smooth-
ness prior (� = 10�3; squares) and the moderate prior (� = 10�4;
circles) used previously. The strong prior leads to an incorrect de-
termination of the power on intermediate scales.

Figure 11. Constraints on parameter space using all the data
from moderate prior (thick lines) and strong prior (thin lines).
The strong prior leads to incorrect constraints, while the mod-
erate prior reconstructs perfectly the constraints obtained from
w(�) directly.

the previous inversion tool. This agreement suggests that
we (as a community) are correctly inferring the power spec-
trum from the angular correlation function.

We worked with the angular APM data; our re-
sults for the three dimensional power spectrum and its
error matrix are shown in Figures 4 and 5. Files con-
taining these numbers are available at http://www-astro-
theory.fnal.gov/Personal/dodelson/Inversion/power.html.

c 0000 RAS, MNRAS 000, 000{000
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Having reiterated these successes, we warn that there
are a number of issues not explored here that warrant further
study:

� The distribution for the angular correlation function is
not Gaussian, as assumed in Eq.[3]. Indeed, even if the uc-
tuations are Gaussian { as they are predicted to be in ina-
tionary models on large scales but are certainyl not on small
scales { the likelihood function is not Gaussian in w. The
full likelihood function is hopelessly complicated (Dodelson,
Hui & Ja�e, 1997), but perhaps there are approximations
that can be made which account for the non-Gaussianity.
Indeed, there has recently been some progress along these
lines (Meiksin & White, 1999; Scoccimarro, Zaldarriaga &
Hui, 1999; Hamilton, 1999; Hamilton & Tegmark, 1999).
� In performing the inversion, we assumed that the power

spectrum was separable: P (k; t) = P (k)f(t) and assumed
a simple form for f(t) ( f = a�). Similarly, we have not
explored at all the uncertainties in the selection function.
We have also used the small angle approximation. All of
these fold into the kernel in Limber's Equation Eq.[1]. They
may be su�cient for APM (e.g. see Gazta~naga & Baugh,
1998), but need to be revisited for deeper surveys, such as
the Sloan Digital Sky Survey.
� We assumed that the covariance matrix for the angular

correlation function is diagonal. The exact nature of this
matrix depends on the binning proceedure, but clearly it
is not diagonal. Our e�orts to obtain the full covariance
matrix from simulations failed, but perhaps simulations on
small scales could be supplemented by linear calculations on
large scales to obtain the full covariance matrix.
� Related to the �rst and third points is our assumption

that the covariance matrix Cw does not depend on w itself.
This again is not true and needs to be accounted for when
constraining parameters in a cosmological model.
� Although we explored the consequences of varying the

smoothness prior, we did not explore how these variations
couple to: (i) di�erent binning schemes for w(�); (ii) dif-
ferent binning schemes for P (k); or (iii) theoretical models
which vary more rapidly than the ones discussed here (e.g.
high baryon models retain signatures of primordial acoustic
oscillations).

All of these assumptions were implicit in previous in-
versions, and other ways of obtaining the power spectrum
involve a similar number of assumptions. So measuring the
angular correlation function still is an excellent way to get at
the power spectrum. Clearly, though, more work is needed
to enable the extraction to be as powerful and accurate as
possible.
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